Copied to
clipboard

G = C62.247C23order 288 = 25·32

92nd non-split extension by C62 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial

Aliases: C62.247C23, (C6×C12)⋊13C4, (C2×C12)⋊6Dic3, (C2×C12).429D6, C62.114(C2×C4), C625C4.8C2, (C22×C12).30S3, C12.62(C2×Dic3), (C22×C6).156D6, C6.106(C4○D12), C12⋊Dic326C2, (C6×C12).359C22, C6.35(C22×Dic3), C3218(C42⋊C2), C2.4(C12.59D6), C34(C23.26D6), (C2×C62).108C22, (C2×C6×C12).12C2, (C4×C3⋊Dic3)⋊26C2, (C2×C4)⋊4(C3⋊Dic3), C23.26(C2×C3⋊S3), C4.15(C2×C3⋊Dic3), (C3×C12).139(C2×C4), (C22×C4).9(C3⋊S3), (C2×C6).55(C2×Dic3), C2.5(C22×C3⋊Dic3), C22.5(C2×C3⋊Dic3), (C3×C6).121(C4○D4), (C2×C6).264(C22×S3), (C3×C6).123(C22×C4), C22.22(C22×C3⋊S3), (C2×C3⋊Dic3).163C22, (C2×C4).102(C2×C3⋊S3), SmallGroup(288,783)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C62.247C23
C1C3C32C3×C6C62C2×C3⋊Dic3C4×C3⋊Dic3 — C62.247C23
C32C3×C6 — C62.247C23
C1C2×C4C22×C4

Generators and relations for C62.247C23
 G = < a,b,c,d,e | a6=b6=e2=1, c2=a3, d2=b3, ab=ba, cac-1=a-1, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece=b3c, de=ed >

Subgroups: 580 in 228 conjugacy classes, 125 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, C2×C4, C23, C32, Dic3, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×C12, C22×C6, C42⋊C2, C3⋊Dic3, C3×C12, C62, C62, C62, C4×Dic3, C4⋊Dic3, C6.D4, C22×C12, C2×C3⋊Dic3, C6×C12, C6×C12, C2×C62, C23.26D6, C4×C3⋊Dic3, C12⋊Dic3, C625C4, C2×C6×C12, C62.247C23
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C4○D4, C3⋊S3, C2×Dic3, C22×S3, C42⋊C2, C3⋊Dic3, C2×C3⋊S3, C4○D12, C22×Dic3, C2×C3⋊Dic3, C22×C3⋊S3, C23.26D6, C12.59D6, C22×C3⋊Dic3, C62.247C23

Smallest permutation representation of C62.247C23
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 15 58 33 39 61)(2 16 59 34 40 62)(3 17 60 35 41 63)(4 18 55 36 42 64)(5 13 56 31 37 65)(6 14 57 32 38 66)(7 136 123 22 29 142)(8 137 124 23 30 143)(9 138 125 24 25 144)(10 133 126 19 26 139)(11 134 121 20 27 140)(12 135 122 21 28 141)(43 96 67 77 83 50)(44 91 68 78 84 51)(45 92 69 73 79 52)(46 93 70 74 80 53)(47 94 71 75 81 54)(48 95 72 76 82 49)(85 118 131 104 112 98)(86 119 132 105 113 99)(87 120 127 106 114 100)(88 115 128 107 109 101)(89 116 129 108 110 102)(90 117 130 103 111 97)
(1 89 4 86)(2 88 5 85)(3 87 6 90)(7 91 10 94)(8 96 11 93)(9 95 12 92)(13 98 16 101)(14 97 17 100)(15 102 18 99)(19 81 22 84)(20 80 23 83)(21 79 24 82)(25 76 28 73)(26 75 29 78)(27 74 30 77)(31 104 34 107)(32 103 35 106)(33 108 36 105)(37 131 40 128)(38 130 41 127)(39 129 42 132)(43 134 46 137)(44 133 47 136)(45 138 48 135)(49 122 52 125)(50 121 53 124)(51 126 54 123)(55 113 58 110)(56 112 59 109)(57 111 60 114)(61 116 64 119)(62 115 65 118)(63 120 66 117)(67 140 70 143)(68 139 71 142)(69 144 72 141)
(1 69 33 52)(2 70 34 53)(3 71 35 54)(4 72 36 49)(5 67 31 50)(6 68 32 51)(7 114 22 120)(8 109 23 115)(9 110 24 116)(10 111 19 117)(11 112 20 118)(12 113 21 119)(13 77 37 43)(14 78 38 44)(15 73 39 45)(16 74 40 46)(17 75 41 47)(18 76 42 48)(25 129 138 102)(26 130 133 97)(27 131 134 98)(28 132 135 99)(29 127 136 100)(30 128 137 101)(55 82 64 95)(56 83 65 96)(57 84 66 91)(58 79 61 92)(59 80 62 93)(60 81 63 94)(85 140 104 121)(86 141 105 122)(87 142 106 123)(88 143 107 124)(89 144 108 125)(90 139 103 126)
(7 22)(8 23)(9 24)(10 19)(11 20)(12 21)(25 138)(26 133)(27 134)(28 135)(29 136)(30 137)(85 104)(86 105)(87 106)(88 107)(89 108)(90 103)(97 130)(98 131)(99 132)(100 127)(101 128)(102 129)(109 115)(110 116)(111 117)(112 118)(113 119)(114 120)(121 140)(122 141)(123 142)(124 143)(125 144)(126 139)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,15,58,33,39,61)(2,16,59,34,40,62)(3,17,60,35,41,63)(4,18,55,36,42,64)(5,13,56,31,37,65)(6,14,57,32,38,66)(7,136,123,22,29,142)(8,137,124,23,30,143)(9,138,125,24,25,144)(10,133,126,19,26,139)(11,134,121,20,27,140)(12,135,122,21,28,141)(43,96,67,77,83,50)(44,91,68,78,84,51)(45,92,69,73,79,52)(46,93,70,74,80,53)(47,94,71,75,81,54)(48,95,72,76,82,49)(85,118,131,104,112,98)(86,119,132,105,113,99)(87,120,127,106,114,100)(88,115,128,107,109,101)(89,116,129,108,110,102)(90,117,130,103,111,97), (1,89,4,86)(2,88,5,85)(3,87,6,90)(7,91,10,94)(8,96,11,93)(9,95,12,92)(13,98,16,101)(14,97,17,100)(15,102,18,99)(19,81,22,84)(20,80,23,83)(21,79,24,82)(25,76,28,73)(26,75,29,78)(27,74,30,77)(31,104,34,107)(32,103,35,106)(33,108,36,105)(37,131,40,128)(38,130,41,127)(39,129,42,132)(43,134,46,137)(44,133,47,136)(45,138,48,135)(49,122,52,125)(50,121,53,124)(51,126,54,123)(55,113,58,110)(56,112,59,109)(57,111,60,114)(61,116,64,119)(62,115,65,118)(63,120,66,117)(67,140,70,143)(68,139,71,142)(69,144,72,141), (1,69,33,52)(2,70,34,53)(3,71,35,54)(4,72,36,49)(5,67,31,50)(6,68,32,51)(7,114,22,120)(8,109,23,115)(9,110,24,116)(10,111,19,117)(11,112,20,118)(12,113,21,119)(13,77,37,43)(14,78,38,44)(15,73,39,45)(16,74,40,46)(17,75,41,47)(18,76,42,48)(25,129,138,102)(26,130,133,97)(27,131,134,98)(28,132,135,99)(29,127,136,100)(30,128,137,101)(55,82,64,95)(56,83,65,96)(57,84,66,91)(58,79,61,92)(59,80,62,93)(60,81,63,94)(85,140,104,121)(86,141,105,122)(87,142,106,123)(88,143,107,124)(89,144,108,125)(90,139,103,126), (7,22)(8,23)(9,24)(10,19)(11,20)(12,21)(25,138)(26,133)(27,134)(28,135)(29,136)(30,137)(85,104)(86,105)(87,106)(88,107)(89,108)(90,103)(97,130)(98,131)(99,132)(100,127)(101,128)(102,129)(109,115)(110,116)(111,117)(112,118)(113,119)(114,120)(121,140)(122,141)(123,142)(124,143)(125,144)(126,139)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,15,58,33,39,61)(2,16,59,34,40,62)(3,17,60,35,41,63)(4,18,55,36,42,64)(5,13,56,31,37,65)(6,14,57,32,38,66)(7,136,123,22,29,142)(8,137,124,23,30,143)(9,138,125,24,25,144)(10,133,126,19,26,139)(11,134,121,20,27,140)(12,135,122,21,28,141)(43,96,67,77,83,50)(44,91,68,78,84,51)(45,92,69,73,79,52)(46,93,70,74,80,53)(47,94,71,75,81,54)(48,95,72,76,82,49)(85,118,131,104,112,98)(86,119,132,105,113,99)(87,120,127,106,114,100)(88,115,128,107,109,101)(89,116,129,108,110,102)(90,117,130,103,111,97), (1,89,4,86)(2,88,5,85)(3,87,6,90)(7,91,10,94)(8,96,11,93)(9,95,12,92)(13,98,16,101)(14,97,17,100)(15,102,18,99)(19,81,22,84)(20,80,23,83)(21,79,24,82)(25,76,28,73)(26,75,29,78)(27,74,30,77)(31,104,34,107)(32,103,35,106)(33,108,36,105)(37,131,40,128)(38,130,41,127)(39,129,42,132)(43,134,46,137)(44,133,47,136)(45,138,48,135)(49,122,52,125)(50,121,53,124)(51,126,54,123)(55,113,58,110)(56,112,59,109)(57,111,60,114)(61,116,64,119)(62,115,65,118)(63,120,66,117)(67,140,70,143)(68,139,71,142)(69,144,72,141), (1,69,33,52)(2,70,34,53)(3,71,35,54)(4,72,36,49)(5,67,31,50)(6,68,32,51)(7,114,22,120)(8,109,23,115)(9,110,24,116)(10,111,19,117)(11,112,20,118)(12,113,21,119)(13,77,37,43)(14,78,38,44)(15,73,39,45)(16,74,40,46)(17,75,41,47)(18,76,42,48)(25,129,138,102)(26,130,133,97)(27,131,134,98)(28,132,135,99)(29,127,136,100)(30,128,137,101)(55,82,64,95)(56,83,65,96)(57,84,66,91)(58,79,61,92)(59,80,62,93)(60,81,63,94)(85,140,104,121)(86,141,105,122)(87,142,106,123)(88,143,107,124)(89,144,108,125)(90,139,103,126), (7,22)(8,23)(9,24)(10,19)(11,20)(12,21)(25,138)(26,133)(27,134)(28,135)(29,136)(30,137)(85,104)(86,105)(87,106)(88,107)(89,108)(90,103)(97,130)(98,131)(99,132)(100,127)(101,128)(102,129)(109,115)(110,116)(111,117)(112,118)(113,119)(114,120)(121,140)(122,141)(123,142)(124,143)(125,144)(126,139) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,15,58,33,39,61),(2,16,59,34,40,62),(3,17,60,35,41,63),(4,18,55,36,42,64),(5,13,56,31,37,65),(6,14,57,32,38,66),(7,136,123,22,29,142),(8,137,124,23,30,143),(9,138,125,24,25,144),(10,133,126,19,26,139),(11,134,121,20,27,140),(12,135,122,21,28,141),(43,96,67,77,83,50),(44,91,68,78,84,51),(45,92,69,73,79,52),(46,93,70,74,80,53),(47,94,71,75,81,54),(48,95,72,76,82,49),(85,118,131,104,112,98),(86,119,132,105,113,99),(87,120,127,106,114,100),(88,115,128,107,109,101),(89,116,129,108,110,102),(90,117,130,103,111,97)], [(1,89,4,86),(2,88,5,85),(3,87,6,90),(7,91,10,94),(8,96,11,93),(9,95,12,92),(13,98,16,101),(14,97,17,100),(15,102,18,99),(19,81,22,84),(20,80,23,83),(21,79,24,82),(25,76,28,73),(26,75,29,78),(27,74,30,77),(31,104,34,107),(32,103,35,106),(33,108,36,105),(37,131,40,128),(38,130,41,127),(39,129,42,132),(43,134,46,137),(44,133,47,136),(45,138,48,135),(49,122,52,125),(50,121,53,124),(51,126,54,123),(55,113,58,110),(56,112,59,109),(57,111,60,114),(61,116,64,119),(62,115,65,118),(63,120,66,117),(67,140,70,143),(68,139,71,142),(69,144,72,141)], [(1,69,33,52),(2,70,34,53),(3,71,35,54),(4,72,36,49),(5,67,31,50),(6,68,32,51),(7,114,22,120),(8,109,23,115),(9,110,24,116),(10,111,19,117),(11,112,20,118),(12,113,21,119),(13,77,37,43),(14,78,38,44),(15,73,39,45),(16,74,40,46),(17,75,41,47),(18,76,42,48),(25,129,138,102),(26,130,133,97),(27,131,134,98),(28,132,135,99),(29,127,136,100),(30,128,137,101),(55,82,64,95),(56,83,65,96),(57,84,66,91),(58,79,61,92),(59,80,62,93),(60,81,63,94),(85,140,104,121),(86,141,105,122),(87,142,106,123),(88,143,107,124),(89,144,108,125),(90,139,103,126)], [(7,22),(8,23),(9,24),(10,19),(11,20),(12,21),(25,138),(26,133),(27,134),(28,135),(29,136),(30,137),(85,104),(86,105),(87,106),(88,107),(89,108),(90,103),(97,130),(98,131),(99,132),(100,127),(101,128),(102,129),(109,115),(110,116),(111,117),(112,118),(113,119),(114,120),(121,140),(122,141),(123,142),(124,143),(125,144),(126,139)]])

84 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D4E4F4G···4N6A···6AB12A···12AF
order12222233334444444···46···612···12
size111122222211112218···182···22···2

84 irreducible representations

dim111111222222
type++++++-++
imageC1C2C2C2C2C4S3Dic3D6D6C4○D4C4○D12
kernelC62.247C23C4×C3⋊Dic3C12⋊Dic3C625C4C2×C6×C12C6×C12C22×C12C2×C12C2×C12C22×C6C3×C6C6
# reps12221841684432

Matrix representation of C62.247C23 in GL6(𝔽13)

320000
090000
004000
0001000
000010
000001
,
1200000
0120000
0012000
0001200
00001212
000010
,
100000
3120000
000100
0012000
0000012
0000120
,
500000
050000
008000
000800
000010
000001
,
180000
0120000
001000
0001200
000010
000001

G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,2,9,0,0,0,0,0,0,4,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[1,3,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,8,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C62.247C23 in GAP, Magma, Sage, TeX

C_6^2._{247}C_2^3
% in TeX

G:=Group("C6^2.247C2^3");
// GroupNames label

G:=SmallGroup(288,783);
// by ID

G=gap.SmallGroup(288,783);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,120,422,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=e^2=1,c^2=a^3,d^2=b^3,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^3*c,d*e=e*d>;
// generators/relations

׿
×
𝔽